
International Journal of Research in Engineering and Science (IJRES)

ISSN (Online): 2320-9364, ISSN (Print): 2320-9356

www.ijres.org Volume 6 Issue 1 ǁ Jan. 2018 ǁ PP.99-112

99

A Python-based laboratory course for image and video signal

processing on embedded systems

K.P.Senthil Kumar,Jhana Ranjan Sahoo, Ankita Panda, Rashmiprava Mishra
Department of Electronics and Communication Engineering, NM Institute of Engineering and

Technology,Bhubaneswar , Odisha

Department of Electronics and Communication Engineering, Raajdhani Engineering

College,Bhubaneswar,Odisha

Department of Electronics and Communication Engineering,Aryan Institute of Engineering and Technology

Bhubnaeswar , Odisha

Department of Electronics and Communication Engineering,Capital Engineering

College,Bhubaneswar,Odisha

ABSTRACT: The usage of embedded systems is omnipresent in our everyday life, e.g., in smartphones, tablets,

or automotive devices. These devices are able to deal with challenging image processing tasks like real-time

detection of faces or high dynamic range imaging. However, the size and computational power of an embedded

system is a limiting demand. To help students understanding these challenges, a new lab course "Image and

Video Signal Processing on Embedded Systems" has been developed and is presented in this paper. The

Raspberry Pi 3 Model B and the open source programming language Python have been chosen, because of low

hardware cost and free availability of the programming language. In this lab course the students learn handling

both hard- and software, Python as an alternative to MATLAB, the image signal processing path, and how to

develop an embedded image processing system, from the idea to implementation and debugging. At the

beginning of the lab course an introduction to Python and the Raspberry Pi is given. After that, various

experiments like the implementation of a corner detector and creation of a panorama image are prepared in the

lab course. Students participating in the lab course develop a profound understanding of embedded image and

video processing algorithms which is verified by comparing questionnaires at the beginning and the end of the

lab course. Moreover, compared to a peer group attending an accompanying lecture with exercises, students

having participated in this lab course outperform their peer group in the exam for the lecture by 0.5 on a five-

point scale.

Keywords:

Image and video signal processing Laboratory course Python

Embedded system

Computer science

Education

I. INTRODUCTION
Embedded systems are used in many different areas like medical engineering (Mastinu et al., 2017),

aeronautics (Sharp et al., 2010), water and energy supply (Raghunathan et al., 2005; Stoianov et al., 2007),

transportation (Bernini et al., 2014; Castellanos et al., 2011), automotive industry (Bhat et al., 2017), and

information and commu-nication technology (Rupniewski et al., 2016). Moreover, in everyday life embedded

systems are omnipresent, e.g., in smartphones or tablets. These devices contain usually an integrated camera and

deal with chal-lenging tasks, like the calculation of high dynamic range images (Tsai et al., 2014) or the

detection of faces in real-time (Mao et al., 2017). Although, the performance of the embedded systems is limited

because of size and mobility, the systems are used in many applications for image and video signal processing.

To show these challenges to the students, a lab course seems to be the best way because of practical and

illustrative presentation (Hodson, 1993; Hofstein and Lunetta, 1982, 2004; Lunetta et al., 2007; Schwartz,

1959). Currently, the lecture "Image, Video, and Multidimensional Signal Processing" and the supplements to

this lecture are offered at the Friedrich-Alexander-University (FAU) Erlangen-Nürn-berg. In this lecture, the

basic understanding in processing of image and multidimensional data like interpolation, feature detection,

segmenta-tion, and transformation are explained. In the supplements, these topics are enlarged by different

blackboard and computer (MATLAB) exercises. However, a laboratory course for signal processing on

embedded systems was missing in the course catalog of the FAU. So, the new lab course "Image and Video

Signal Processing on Embedded Systems" has been developed. In this paper, this lab course is presented and the

benefits for students are shown.

A Python-based laboratory course for image and video signal processing on embedded systems

100

Different definitions of an embedded system exists, e.g., Wang de-scribes a medium-scale embedded

system as a microprocessor with programming tools (debugger, simulator, integrated development envi-

ronment), which typically possesses an operating system (OS) (Wang, 2017). By the definition of Vahid and

Givargis an embedded system must be cheap, fit on a single chip, process data in real time, and consume

minimum power to prevent a cooling fan. In addition, embedded systems are present in several common

electronic devices, such as digital cam-eras, calculators, home security systems, washing machines, printers,

product scanners, etc (Vahid and Givargis, 2002). All compared systems fulfill both definitions and are

classified as embedded system in (Abbot, 2018).

Some requirements for the choice of the embedded system for the new lab course are given. The

handling of the system should be possible with display, mouse, and keyboard, and a user-friendly OS with a

graphical user interface (GUI) should also be used. The needed connec-tion for the additional hardware should

exist and a connection to a network should also be possible. For the usage of Python, a Python interpreter should

be present. Finally, the embedded system should be inexpensive, but capable for the experiments.

Different embedded systems exist, but not every of those fulfills these requirements. The BeagleBone

Black (BeagleBoard.org Foundation, 2018) provides a processor with 1 GHz and 512 MB RAM, a micro-

HDMI, USB 2.0 ports and an own OS. The Raspberry Pi Foundation provides six different embedded systems

(Raspberry Pi Foundation, 2018). The Raspberry Pi 1 Model A has been introduced in February 2012 as first

embedded system and has been replaced by the successor Raspberry Pi 1 Model Aþ in November 2014

(Raspberry Pi Foundation, 2018). The latest model is the Raspberry Pi 3 Model B. It is a cost-effective, up-to--

date and widespread embedded system. The BeagleBone Black and the Raspberry Pi 3 Model B fulfill all the

requirements of the lab course. However, the BeagleBone Black is twice as expensive as the Raspberry Pi and,

in addition, the Raspberry Pi has a better CPU and RAM. Thus, the Raspberry Pi is used in the newly developed

lab course "Image and Video Signal Processing on Embedded Systems". In addition, the Raspberry Pi is so

inexpensive that the students can also use the device at home for further experiments.

This paper is organized as follows. In Section 2 the laboratory equipment with hardware and software

is presented. In Section 3 the learning objectives and the laboratory properties are explained. In Sec-tion 4 the

laboratory experiments are described. In Section 5 the assessment of the lab course is shown and the last section

concludes this paper.

II. INSTRUMENTATION
At the beginning of the lab course, all groups receive a box with the required hardware components:

mouse, keyboard, HDMI to DVI adapter cable, power supply, Raspberry Pi 3 Model B, USB camera, and micro

SD card. In the first experiment and before every experiment all the com-ponents are connected together. The

displays are already available in the laboratory room. The setup is very easy and will be performed by the

students in Experiment I. By this, the students learn the practical set-up work with embedded systems directly.

First, the micro SD card with the pre-installed OS Raspbian Jessie (Raspberry Pi Foundation, 2018) is

inserted in the SD card slot. After that, all the other hardware is connected by USB or HDMI with the Raspberry

Pi as depicted in Fig. 1. The OS boots after connecting the power supply. The whole hardware is recognized

instantly. The config-uration of the system and the connection to the Wi-Fi is done in the first

Fig. 1. Block diagram of the connected components of the workstation.

experiment, the camera is connected and tested in the fourth experiment. Updates are installed regularly

by the students to keep the software up to date. We decided to use an USB camera instead of the Raspberry Pi

camera module (Raspberry Pi Foundation, 2018), so the experiments can easily be transferred to other

embedded systems. Furthermore, USB cameras are used in many industrial computer vision applications, e.g.,

A Python-based laboratory course for image and video signal processing on embedded systems

101

Basler, an internationally leading manufacturer of high-quality cameras mostly uses USB as interface (Basler,

2019).

The students perform the whole setup on their own, so they learn how to handle sensitive hardware.

They recognize, that an embedded system is a circuit board, which must be handled with care. Thus, such an

embedded system should always be operated in its provided case.

2.1. Raspberry Pi 3 Model B

The Raspberry Pi 3 Model B is the third generation Raspberry Pi and is developed by the Raspberry Pi

Foundation (Raspberry Pi Foundation, 2018). All necessary components like CPU, GPU etc. are placed on the

Broadcom chip. The embedded system is equipped with following parts (Raspberry Pi Foundation, 2018):

Quad Core 1.2 GHz Broadcom BCM2837 64 bit CPU with 1 GB RAM, BCM43438 wireless LAN and

Bluetooth Low Energy (BLE) on board, 40 pin extended GPIO and status LEDs,

4 USB 2.0 ports and 10/100 Mbit ethernet port,

4 pole stereo output and composite video port,

CSI camera port for connecting a Raspberry Pi camera and DSI display port for connecting a Raspberry Pi

touchscreen display, full size HDMI output and micro USB power input, and micro SD card port for loading the

OS and storing data (underside).

However, the Raspberry Pi neither possess a non-volatile internal memory nor an interface for an

internal harddisk. Moreover, there is no on-off switch. So, the power will be switched off when the power

supply will be disconnected from the micro USB power input. Usually, the Raspberry Pi should be put into a

case to protect the system.

2.2. Software

For the lab course, the officially supported operating system Raspbian Jessie in its newest version is

used (Raspberry Pi Foundation, 2018). The OS is already installed on the micro SD card for the students

because the installation takes a lot of time and is uninformative. The OS supports the whole hardware of the

Raspberry Pi, and provides a desktop interface and some useful software. By putting the micro SD card into the

card slot the OS will boot immediately after the power supply is plugged in. The used micro SD card can read

up to 100 MB/s and write up to 90 MB/s. It is a Class 10 card and has a capacity of 32 GB. This card has been

chosen because otherwise the update and installation process would take too long.

The experiments are prepared with the open source programming language Python (Python Software

Foundation, 2018). The readability of a program has been the most important part during the development of

Python. The language can easily be learned and supports the most common programming paradigms, e.g.,

object, aspect, and functional orientation. Python only needs a few keywords and the syntax is clear and easy to

read. Python 2, Python 3, and the integrated development environment IDLE for Python are already installed on

the OS.

Python was chosen because it is simple to read and to learn, it is open and free. Moreover, it consists of

an extensive standard library, which aims at programming in general and contains specific modules for

threading, networking, databases, etc. Furthermore, there are a lot of additional packages, e.g., for plotting and

handling images, which are also used in the laboratory. As a student of a technical study program, Python serves

as a good basis for future jobs, because many companies use Python as primary programming language (Cass,

2018).

Table 1

Overview of properties and costs of the lab course.

ECTS 2.5

Number of experiments 7

Length of experiment Ca. 4 hours

Group size 2-3 students per

 group

Participating students 27

Costs for Raspberry Pi, power supply and case 44 Euro per

 device

Costs for additional hardware: USB camera,

keyboard, mouse, 84 Euro per

micro SD card and HDMI-DVI cable device

A Python-based laboratory course for image and video signal processing on embedded systems

102

Costs for the server 1000 Euro

Total costs for lab course hardware for 30

students 2920 Euro

During the lab course various software and Python packages will be installed. A detailed description can be

found in the individual experiments.

2.3. Server

For the lab course, a network connectivity is necessary for updating, downloading, and searching in the

internet. Therefore, a server with a wireless network adapter is provided. The adapter sets up a Wi-Fi network,

so the individual Raspberry Pis can establish a connection with the server and receive internet access. With

FileZilla (Kosse, 2018), which is installed in the third experiment, the students can upload their generated code

and results, and download provided data like the labo-ratory manual, a pre-compiled OpenCV library, and

Python scripts. For

Fig. 2. Overview of the image signal process for creating a panorama.

Experiment IV to VII, parts of the Python source code are available on the server, so the preparation of

the tasks is easier for the students. For up-dates, an internet access is necessary. Furthermore, the students

should be enabled to search the internet for solving a problem or understanding details. This way, they learn

how to solve a problem on their own by discussing and investigating together. The server is needed since the

Raspberry Pi should not be connected directly to the university network, because of security reasons.

Furthermore, the progress of the groups can be controlled and an adequate quality of service can be provided.

A Python-based laboratory course for image and video signal processing on embedded systems

103

III. DESIGN
The lab course is based on the successful completion of seven ex-periments. Therefore, 2.5 ECTS can

be achieved, which consists of around four hours in the lab and around six hours for preparation and follow-up

per experiment. Considering the requirements, teamwork and cooperation with the other students are strongly

encouraged throughout the course. The students prepare the courses in groups of two in a weekly session. Some

basic programming skills (e.g., MATLAB, C, etc.) and the participation in a basic lecture for signal processing

are recommended for participating in the lab course. So, bachelor and master students can take part in the lab

course. The following study paths take part at the lab course: Electrical, Electronics and Communication

Engineering (EEI), Information and Communication Technology (IuK), Advanced Signal Processing and

Communications Engineering (ASC), and Communica-tions and Multimedia Engineering (CME). The students

are normally at the end of their bachelor's degree or at the beginning of their master's degree. In the introduction

part of the laboratory manual, all information

Fig. 3. Parts of a conventional lecture (theory and software) and a lab course (theory, software, and hardware).

for preparation and accomplishment of the lab course are summarized. Each student receives a printed

manual at the beginning of the lab course. A digital copy of the laboratory manual is also available in the e-

learning system of the university. Before every experiment, the students should study the manual at home to be

prepared for the current experiment. Table 1 shows an overview of the properties and costs of the lab course. A

Raspberry Pi 3 Model B, a power supply and a case for the Raspberry cost around 44 Euro. The additional

hardware, like USB camera, keyboard, mouse, micro SD card and HDMI-DVI cable costs around 84 Euro. If

some students want to use the Raspberry lab system at home, some of the additional hardware, like keyboard or

mouse, does not have to be pur-chased. So, costs decrease for the use at home. For the laboratory, a server was

purchased for around 1000 Euro.

The fact that no special requirements are necessary for the lab course

Table 2

Summary of the experiments prepared in the lab course.

Experiment Experiment Title Topics and Learning Objectives

No.

Experiment

I

Ready, Steady,

Go:

Connecting and handling the

Raspberry

Initial Operation

of Pi

 the Embedded

Starting and configuring the

operating

 System system

 Updating the software

Experiment

II Hello Python:

Motivation and introduction to

Python

 Introduction to

Programming with Python in

version 2

 Python and 3

A Python-based laboratory course for image and video signal processing on embedded systems

104

 Understanding the concept of an

 algorithm

Experiment Say Cheese: Properties of digital images

III Introduction to

Creating an image with Python

Imaging

 Image Signal Library (PIL)

 Processing with Processing of the created image

 Python

Comparing the runtime of

different

 algorithms

Experiment Take a Picture: Properties of digital imaging

IV Image Signal

Connecting and testing the USB

camera

 Processing with a

Application and understanding

of

 Camera different digital filters

Implementing algorithms for

image

 enhancement

Experiment

V From Machine's

Overview of typical features in

images

 Point of View: Detection of edges

 Introduction to

Comparison of different edge

detectors

 Computer Vision

Experiment Great View:

Introduction to panoramic

imaging

VI

Creating a

Panorama,

Implementing the Harris and

Stephens

 Part 1 corner detector

 Analyzing the results

Experiment Pixel Puzzle:

Implementation of a user

interface

VII

Creating a

Panorama,

Introduction to scale-invariant

feature

 Part 2 transform algorithm (SIFT)

 Implementation of SIFT

Testing the program and

analyzing

 errors

affects the first experiments. The commissioning of the embedded system and the involvement in the

laboratory network are the topics of the first experiment. In the second experiment, the fundamentals of Python

are introduced. Furthermore, the typical path of image signal processing is passed in the following experiments.

In Fig. 2 the red flowchart shows this typical path with recording, processing, composition and replaying. The

processing part includes many options like converting to grayscale, scaling, increasing contrast, etc. In Fig. 3 the

different parts of a con-ventional lecture and a lab course are depicted. While in a conventional lecture ("Image,

Video, and Multidimensional Signal Processing") only the aspects theory and software are used, also the aspect

hardware is considered in a lab course ("Image and Video Signal Processing on Embedded Systems"). So, these

three aspects are weighted in the different experiments. The aspect software involves the independent

implementation of the different algorithms or the updating process, hardware involves the independent usage of

the different components like the camera, and theory involves the description and understanding of different

methods and needed knowledge for the various tasks. The first experiment only contains the aspect hardware,

the second only software. The following experiments combine all three aspects, however in different relations.

The lab course "Image and Video Signal Processing on Embedded Systems" imparts knowledge and fulfills the

following learning objectives:

A Python-based laboratory course for image and video signal processing on embedded systems

105

Students learn how to handle different kind of hardware and under-stand the importance of a proper handling of

the hardware. Students learn how to read and write the programming language Python as alternative to

MATLAB.

Students understand and explain the image signal processing path.

Students classify and apply different kind of image filters.

Students are able to create a whole program, from the idea to implementation and debugging.

Students learn how to solve a problem on their own and are able to apply their knowledge.

Students learn how to handle an operating system and different software on the embedded hardware, and

understand the importance of periodically updating the software.

After successfully finishing the lab course, the students have obtained new knowledge and abilities, which they

can use in their future profes-sional careers. A detailed overview of the learning objectives with respect to each

experiment is given in Table 2.

All experiments are identically constructed. The front page of the description includes a catchy title, a

matching image, and an informative subtitle. In addition, motivation, aim, and thematically background are

described on the first page. On the second page, content overview, re-quirements for hardware and software,

some links for self-study and comments for the experiment are listed. The detailed description and tasks of the

experiment begin on the third page. The given code and other commands are marked by a different font or are

summarized in tables. Important chapters are labeled by an exclamation mark. The tasks are specially separated

by a horizontal line. So, the laboratory manual il-lustrates the topics and aims of the lab course to the students in

a clear and structured way. Experiments I to VI each contain an optional exer-cise, which is not necessary for

passing the lab course. If a group has completed all tasks of an experiment before the end of time, these

additional tasks can be carried out.

IV. STUDY AREA
In the following subsections, the seven experiments are explained in detail. Table 2 shows a summary

of the experiments, their topics, and their learning objectives. The experiments have been especially created for

the Raspberry Pi, however, they are not bounded to it. They can also be solved on other embedded systems with

different operating systems.

However, it is important that Python, the needed Python libraries, and OpenCV are installed on the system. So,

the whole laboratory tasks are transferable.

4.1. Experiment I: Initial operation of the embedded system

In the first experiment, the whole setup is put into operation after explaining the physical structure of

the Raspberry Pi, as depicted in Fig. 1. The display, mouse, and keyboard are connected with the Rasp-berry Pi

and the micro SD card with the current OS Raspbian Jessie is put into the micro SD slot. After booting the

Raspberry Pi, the system is set up, i.e., changing hostname, keyboard layout, expanding filesystem, etc. Also a

connection to the Wi-Fi is established and the OS is upgraded. The aspect hardware dominates this experiment.

So, the students learn the handling with the Raspberry Pi. A simple introduction to the lab course is possible

because of the low level of difficulty.

4.2. Experiment II: Introduction to Python

In this experiment, the programming language Python is introduced on the embedded system. The

aspect software dominates this experi-ment. A motivation for learning Python, an introduction to the syntax, and

the first tasks are part of this experiment. In addition, the students learn the difference between version 2 and

version 3 of the programming language. The print function and the keywords of the different versions are used

mainly to show the varieties. The understanding of the devel-opment of algorithms is taught by implementing

small coding functions, e.g., the transfer of data is implemented in Python. So, the import and export of image

data is introduced in a simple way. The students learn the basics of the programming language and enlarge their

knowledge in the additional experiments. Furthermore, they learn the basics for devel-oping a complete

program.

4.3. Experiment III: Introduction to image signal processing with Python

In the third experiment, the fundamentals of image signal processing with Python are introduced. The

path of the image signal processing is explained in detail (Fig. 2, red flowchart). The recording is the conver-

sion of an analogous light signal into a digital representation. Each pixel possesses a value for the color

information, the number of pixels in horizontal or vertical direction represent the resolution of an image. The

substantial task of the processing part is to eliminate the errors caused while recording an image. Therefore,

different pre-processing steps like converting to grayscale, scaling the image, or increasing contrast can be

A Python-based laboratory course for image and video signal processing on embedded systems

106

performed. The goal is to process the data in a way which prevents the viewer from perceiving errors during the

replay. The properties of images like resolution and color are also described by a coordinate system of a bitmap

and different color spaces. This theoretical description is the foundation for later computer vision experiments.

The aspects software and theory dominate this experiment. At the beginning, Python Imaging Library (PIL)

(Lundh and Ellis, 2018) and FileZilla are installed. PIL adds support to Python for opening, saving and changing

different image file formats. To learn and train more Python, a chessboard is created and modified with the PIL

on different ways. The students learn how to save

Fig. 4. Example images of the result plots of the Experiments IV, VI and VII.

and open an image, and how to transpose and enframe the created cheeseboard. The runtimes of the

different implementations are measured and compared. Thus, the students figure out how challenging image

signal processing on an embedded system can be. This experiment benefits the understanding of a general

implementation of functions. The more general a function is implemented, the easier the post-processing and the

usage.

4.4. Experiment IV: Image signal processing with a camera

In this experiment the camera is connected to the Raspberry Pi before the properties of digital imaging

are explained. At the beginning, Nu-merical Python (NumPy) (NumPy Developers, 2018), Python for Science

(SciPy) (SciPy Developers, 2018) and Matplotlib (Hunter et al., 2018) are installed. NumPy is an effective

library for displaying and calculating N-dimensional arrays. SciPy expands Python by many efficient mathe-

matical functionalities. Matplotlib is a comprehensive and efficient li-brary for plotting different images and

graphs. After the installation, the students take some pictures while changing the parameters brightness and

contrast. The poor quality of the images should be a motivation for applying some digital filters to the images

for improving the quality. After converting the acquired images into grayscale, the distribution of the pixel

values is shown with the help of a histogram. The students should realize that depending on the setting of

A Python-based laboratory course for image and video signal processing on embedded systems

107

brightness, different pixel value areas dominate in the histogram. For improving the dynamic range of the

image, a histogram equalization should be implemented and applied to the different images. The implementation

of the algorithm is getting more complex. Thus, to compare the calculated results some plots with the correct

results are included in the laboratory manual. To in-crease the level of difficulty, less source code is given in this

experiment. The focus in this experiment is on recording and pre-processing the im-ages in the path of image

signal processing (Fig. 2, red flowchart). Furthermore, it is shown, that efficient pre-processing methods are

necessary for complex computer vision algorithms. The students also understand how digital imaging is working

in theory and practically. All three aspects are present in this experiment, however, the aspect soft-ware

dominates.

In Fig. 4a, a captured image with a logo is used to demonstrate the histogram equalization. Before, the

values of the images range from around 0 to 175 with two peaks at around 30 and 125. After the equal-ization,

the whole value range is used uniformly and the contrast is higher. The reflection in the cup is better

recognizable and the color fan is illustrated with more shades of gray and is more distinguishable.

4.5. Experiment V: Introduction to computer vision

In the fifth experiment, an introduction to computer vision is given. Before the students can begin with the

experiment, the Python library OpenCV version 2.4.13.3 is installed (OpenCV team, 2018). OpenCV is an

open and free Cþþ library for computer vision tasks. It has been designed for computational efficiency

and real-time applications. Since the compilation of this packet takes several hours on the Raspberry Pi, a pre-

compiled version of OpenCV is provided on the server, which has to be installed. OpenCV contains a lot of

computer vision algorithms which will be used in this and the following experiments. The image signal

processing in Fig. 2 (red flowchart) will be extended by the content-based signal analysis (blue flowchart). After

pre-processing, the image signal will be analyzed by extraction, recognition, and comparison of features in

images, and the images will be composed for replaying. The experiment focuses on feature recognition.

Therefore, typical features in an image are introduced and different methods for edge and corner detection are

implemented in this experiment. A horizontal and vertical gradient operator, the Sobel operator, the Laplace

operator, and the Laplacian of Gaussian operator are implemented and compared (Ziou and Tabbone, 1998).

Advantages and disadvantages of the different operators are shown on images taken by the students. So, a filter

can improve the detection of edges and corners. This experiment is mathematically demanding, so new Python

elements are not introduced. In addition, the students understand the theory of features and test different edge

de-tectors. Thus, the aspect theory dominates this experiment.

On the left side of Fig. 5, a Python code fragment of the implemented Sobel operator is depicted. In

this exercise, the students implement their own Sobel filter and for comparison use the provided Python Sobel

filter. Different possible rotations of the filter should be tested to see that the Sobel filter is able to identify not

only horizontal and vertical edges but also diagonal structures. Furthermore, the students learn that the Sobel

filter outperforms the gradient operator.

4.6. Experiment VI: Creating a panorama, part 1

In this experiment, the fundamentals of panoramic imaging are explained. In a panorama, a broader

range from a scene is captured than a human eye can perceive or a camera can capture. For creating a pano-

rama, several single images are captured and stitched together, while the shooting location of the camera stays

the same for all images. Motion in a scene, different illumination, or perspective distortion cause problem and

A Python-based laboratory course for image and video signal processing on embedded systems

108

errors in a panorama. The distortion can be eliminated by a correct projection. Therefore, unique features have

to be found in the captured images and compared with each other. After finding some matches, the images can

be warped and combined. Detecting unique features in an image is necessary for a good panorama. So, the

students are imple-menting the Harris and Stephens corner detector (Harris and Stephens, 1988). To illustrate

the corner detection, different plots of a synthetic and a noisy image are made. Thereby, also a 3D plot is

implemented by the students. However, the Harris and Stephens corner detector finds way too many corners in a

synthetic image and thus, it is not a good detector for creating a panorama. The level of difficulty for the theory

of the algo-rithm and the mathematical description is high. So, new Python elements

Fig. 5. Python code fragments for the Experiments V (left) and VI (right).

are also not introduced in this experiment. However, the students learn the theory of creating a

panorama. In addition, the aspects theory and software dominate this experiment.

In Fig. 4b, the original image of a chessboard, the corner response function R of the Harris and Stephens corner

detector (Harris and Ste-phens, 1988), and the detected corners are shown. R is negative in edge regions,

positive in corner regions and almost zero in flat regions. So, the corners of the chessboard are marked with a

white dot in the upper right image. Around 14000 corners can be found in this example, however, some corners

in the top of the chessboard cannot be recognized. A zoom into the chessboard depicts why so many corners can

be found. In the zoomed in area around 264 possible corners are detected. Thus, the Harris and Stephens corner

detector is not a reliable detector for creating a panorama and should be replaced by more advanced features.

Furthermore, on the right side of Fig. 5 the Python code of the Harris and Stephens corner detector is

depicted. With the support of the paper of Harris and Stephens (Harris and Stephens, 1988), the students

implement the detector gradually. For the corner response function R the determi-nant and the trace of the

matrix elements are used. With the value of the response function R, a specific pixel can be defined as edge,

corner, or flat. By thresholding the response function R, the corners in the image can be detected and used for

further processing.

4.7. Experiment VII: Creating a panorama, part 2

In the last experiment, the final algorithm for creating a panorama is implemented as shown in Fig. 2.

An interface (green dashed flowchart) enables the user to configure essential parameters and to control the

whole process of the algorithm. In the first step, single frames are taken with the USB camera. Pre-processing

with conversion to grayscale, downsampling and increasing contrast, feature extraction and feature recognition

are done by the scale-invariant feature transform (SIFT) (Lowe, 2004). After that, the images are stitched

together and can be replayed on the Raspberry Pi. In the first step, the scale-space extrema detector is used for

feature extraction, i.e., the grayscale image is convolved with a Gaussian filter at different scalings, the

differences of successive blurred images are taken, and then maxima and minima (keypoints) are detected in the

difference of Gaussian. The found key-points are characterized by a descriptor vector, i.e., magnitude and angle

are describing the keypoints. The detected keypoints are compared by nearest neighbor distance ratio (NNDR),

i.e., the ratio of the distance to the two nearest neighbor is calculated. A good match is found, if the ratio is

smaller than 0.8, i.e. 90 % of false positive and less than 5 % of true positive are eliminated (Lowe, 2004). The

good matches are used for calculating the homography matrix. To eliminate occurring outliers, the random

sample consensus (RANSAC) is further applied (Fischler and Bolles, 1981). After calculating and optimizing

the homography matrix, the panorama can be created. At the end, a load test for the RAM of the Raspberry Pi is

performed. Therefore, a panorama with different reso-lutions is created while the used RAM is observed. If the

resolution is set too high (about 1920 1080 pixels), the Raspberry Pi will be stretched to its limits, i.e., there is

no freely avaible memory left and the Raspberry Pi crashes. Thus, the students learn that an embedded system

A Python-based laboratory course for image and video signal processing on embedded systems

109

has its limi-tation in memory and performance. In this experiment the students learn to create a whole program,

and how to analyze errors.

In Fig. 4c the individual steps of the program are shown with two images. First, the images are taken

with the USB camera (top left). After that, the images are converted into grayscale and the keypoints are

detected in both images with SIFT and marked with red circles (bottom left). The bigger a circle, the more

important this keypoint is for further processing. Good matches are found by NNDR and connected by a green

line (top right). However, not every connection is a good one, like the connection between the corner of the right

house and a tower, which will be eliminated by RANSAC. In the end the two images are scaled and combined

to a panorama by the calculated homography matrix (bottom right).

Fig. 6. Boxplot of the linked lecture “Image, Video, and Multidimensional Signal Processing”. The black

crosses indicate the mean value. The grades range from 1 to 5, whereby 1 is the highest and 5 is the lowest

grade.

Fig. 7. Boxplot of the tests before and after the lab course. The black crosses indicate the mean values.

Fig. 8. Average student evaluation of the individual experiments of the lab course.

A Python-based laboratory course for image and video signal processing on embedded systems

110

Table 3

Average student evaluation of the lab course.

Evaluation questions Average

For these questions: 1-excellent … 3-fair … 5-

very poor

How would you evaluate the handling with the

Raspberry? 1.41

How would you evaluate the laboratory manual? 1.33

How would you evaluate the experiments? 1.33

How would you evaluate the organization of the

laboratory? 1.19

Overall, how would you evaluate the laboratory? 1.30

For these questions: 1-too high … 3-about right …

5-too low

The time spent in the laboratory was: 2.59

The time spent for preparation was: 2.78

V. RESULTS & DISCUSSION
At the Faculty of Engineering of the FAU, every semester an evalua-tion of the different lectures,

tutorials, seminars, and laboratories takes places. Therewith, the students have the opportunity to contribute to

the improvements of teaching at the FAU. The "Image and Video Signal Processing on Embedded Systems" lab

course has also been evaluated by the evaluation system of the university. The students have rated the lab course

with a 1.15, whereby 1 is the highest and 5 is the lowest grade. This is much higher than the average voting of

2.09 for all lab courses at the FAU and leads to a third place out of in total 50 in the category lab courses at the

FAU. The consent for collecting the data and publishing these results is given by the Evaluation Board and the

managing Officer.

To ensure that the lab course can improve the students’ knowledge about image and video signal

processing, the grades of the exam of the linked lecture "Image, Video, and Multidimensional Signal

Processing" are analyzed. Since the content of the lecture and the laboratory largely overlap, the knowledge in

image and signal processing can be improved by participating in the lab course. Altogether, 44 students have

partici-pated in the exam and 27 have participated in the lab course. Altogether, 6 out of these have participated

in both the exam and the lab course. The exam was performed after the lab course, so the impact of the lab

course for learning the topics of image and video signal processing can be evaluated. In Fig. 6 the performance

of the different groups of students are depicted as boxplot. The central red mark indicates the median value, the

blue bottom and top edges of the boxes the 25th and 75th percentiles, respectively, and the black whiskers the

most extreme data points. The black crosses indicate the mean value. The grades ranges from 1 to 5, whereby 1

is the highest and 5 is the lowest grade. It can be seen that the students who participated in the lab course

perform better with a grade of 1.67 than the peer students (average grad 2.13). Evidently, the students seem to

memorize the content better, because they learn it not only in theory but also practically.

Furthermore, before and after the lab course a test with 15 questions about image and video signal

processing on embedded systems wasperformed. 27 students have participated in the lab course and have taken

part in the test. Thus, it can be seen how the students have improved in this topic during the lab course. In Fig. 7

the results of both tests are depicted as a boxplot. The description of the boxplot can be found in the previous

section. It can be seen, that the students have been able to improve their knowledge about image and video

signal process- ing. On average, the students could answer around 47.80 % of the questions in the entrance test,

and around 70.02 % in the second test. The lowest performance for the entrance test is 21.88 % and the highest

is 84.38 %. For the second test both values could be outperformed with 40.63 % and 96.88 %.

In addition, each experiment as well as the whole lab course have been evaluated by the students using

an evaluation sheet. 27 students took part in this evaluation again. In Fig. 8 the evaluation of the indi-vidual

experiments is shown. The students have evaluated the experi-ments in the aspect of time, difficulty, effort,

hardware, software, and mentoring. All aspects were rated between 1 and 1.96 on a five-point scale. In Table 3

the questions and results of the evaluation of the whole lab course are summarized. The handling with the

Raspberry Pi, the laboratory manual, the experiments and the organization of the lab course have been evaluated

between excellent and good. Overall, the lab course has been evaluated with 1.30. The time spent in the

laboratory and for preparation has been evaluated between "about right" and "high". For all test results described

above the consent for publication was given by the participating students.

A Python-based laboratory course for image and video signal processing on embedded systems

111

Overall, the effectiveness of the lab course can be confirmed by comparing the grades of the exam of

the linked lecture and by the results of the test before and after the lab course. Furthermore, the lab course has

been self-evaluated by the students as very good.

VI. CONCLUSION
In this paper the newly developed lab course "Image and Video Signal Processing on Embedded

Systems" has been presented. The Raspberry Pi 3 Model B has been chosen as embedded system because of

property, availability, and cost-efficiency. Different programming tasks have to be solved by the groups on the

Raspberry Pi in the programming language Python. Python has been chosen because of readability, easy

learning, and clearness. In addition, Python is an open source programming lan-guage. The requirements and the

seven different experiments that have to be prepared are presented in this paper. Furthermore, the learning

objectives were highlighted in the paper. The students learn the handling with hardware and software, to read

and write in Python, the image signal processing path, and the development of a program. The improvement of

the students in image and video signal processing was verified by the grades of the exam of the linked lecture

and the assess-ment of a test before and after the lab course. Furthermore, the lab course has been evaluated by

the participating students in the evaluation system of the university and in a self-developed evaluation sheet.

Overall, in both evaluation systems the lab course has been rated between excellent and very good. The lab

course can easily be extended by further exper-iments. In the future it is planned to add two new experiments.

The first one will deal with object detection and the other one with background replacement. So, the aspect of

video signal processing will be given more weight in the lab course.

Declarations

Author contribution statement

Karina Jaskolka: Conceived and designed the experiments; Performed the experiments; Analyzed and

interpreted the data; Contributed re-agents, materials, analysis tools or data; Wrote the paper.

Jürgen Seiler: Conceived and designed the experiments; Analyzed and interpreted the data; Contributed

reagents, materials, analysis tools or data; Wrote the paper.

Frank Beyer: Conceived and designed the experiments.

Andre Kaup: Conceived and designed the experiments; Analyzed and interpreted the data; Contributed reagents,

materials, analysis tools or data.

Funding statement

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-

profit sectors.

Competing interest statement

The authors declare no conflict of interest.

Additional information

No additional information is available for this paper.

REFERENCES
[1]. Abbot, D., 2018. Linux for Embedded and Real-Time Applications. Newnes. Basler, A.G., 2019. Basler

the Power of Sight. Retrieved from. https://www.baslerweb.com.

[2]. BeagleBoard.org Foundation, 2018. BeagleBone Black. Retrieved from. http://beagle board.org/black.

[3]. Bernini, N., Bombini, L., Buzzoni, M., Cerri, P., Grisleri, P., 2014. An embedded system for counting

passengers in public transportation vehicles. In: Proc. IEEE/ASME 10th International Conference on

Mechatronic and Embedded Systems and Applications, pp. 1–6.

[4]. Bhat, A., Samii, S., Rajkumar, R., 2017. Practical task allocation for software fault-tolerance and its

implementation in embedded automotive systems. In: Proc. IEEE Real-Time and Embedded Technology

and Applications Symposium, pp. 87–98.

[5]. Cass, S., 2018. The 2017 Top Programming Languages. Retrieved from. https://spectr

um.ieee.org/computing/software/the-2017-top-programming-languages.

[6]. Castellanos, J.C., Susin, A.A., Fruett, F., 2011. Embedded sensor system and techniques to evaluate the

comfort in public transportation. In: Proc. 14th International IEEE Conference on Intelligent

Transportation Systems, pp. 1858–1863.

[7]. Fischler, M.A., Bolles, R.C., 1981. Random sample consensus: a paradigm for model fitting with

applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395.

[8]. Harris, C., Stephens, M., 1988. A combined corner and edge detector. Proc. Fourth Alvey Vis. Conf.

147–151.

http://refhub.elsevier.com/S2405-8440(19)36220-6/sref1
https://www.baslerweb.com/
https://www.baslerweb.com/
https://www.baslerweb.com/
http://beagleboard.org/black
http://beagleboard.org/black
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref4
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref4
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref4
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref4
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref4
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref4
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref4
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref4
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref4
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref5
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref5
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref5
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref5
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref5
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref5
https://spectrum.ieee.org/computing/software/the-2017-top-programming-languages
https://spectrum.ieee.org/computing/software/the-2017-top-programming-languages
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref7
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref7
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref7
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref7
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref7
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref7
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref7
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref7
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref8
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref8
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref8
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref8
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref8
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref8
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref9
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref9
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref9
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref9
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref9

A Python-based laboratory course for image and video signal processing on embedded systems

112

[9]. Hodson, D., 1993. Re-thinking old ways: towards a more critical approach to practical work in school

science. Stud. Sci. Educ. 22 (1), 85–142.

[10]. Hofstein, A., Lunetta, V.N., 1982. The role of the laboratory in science teaching: neglected aspects of

research. Rev. Educ. Res. 52 (2), 201–217.

[11]. Hofstein, A., Lunetta, V.N., 2004. The laboratory in science education: foundations for the twenty-first

century. Sci. Educ. 88 (1), 28–54.

[12]. Hunter, J., Dale, D., Firing, E., Droettboom, M., 2018. Matplotlib. Retrieved from. http://

www.matplotlib.org.

[13]. Kosse, T., 2018. FileZilla - the Free FTP Solution. Retrieved from. https://filezilla-pro ject.org/.

[14]. Lowe, D.G., 2004. Distinctive image features from scale-invariant keypoints. Int. J.Comput. Vis. 60 (2),

91–110.

[15]. Lundh, F., Ellis, M., 2018. Python Imaging Library (PIL). Retrieved from.

http://www.pythonware.com/products/pil.

[16]. Lunetta, V.N., Hofstein, A., Clough, M.P., 2007. Learning and teaching in the school science laboratory:

an analysis of research, theory, and practice. Handb. Res. Sci. Educ. 393–441.

[17]. Mao, H., Yao, S., Tang, T., Li, B., Yao, J., Wang, Y., 2017. Towards real-time object detection on

embedded systems. IEEE Trans. Emerg. Top. Comput. 1-1.

[18]. Mastinu, E., Doguet, P., Botquin, Y., Håkansson, B., Ortiz-Catalan, M., 2017. Embedded system for

prosthetic control using implanted neuromuscular interfaces accessed via an osseointegrated implant.

IEEE Trans. Biomed. Circuits.Syst. 11 (4), 867–877.

[19]. NumPy Developers, 2018. NumPy. Retrieved from. http://www.numpy.org.

[20]. OpenCV team, 2018. OpenCV. Retrieved from. http://www.opencv.org.

[21]. Python Software Foundation, 2018. Python. Retrieved from. https://www.python.org/. Raghunathan, V.,

Kansal, A., Hsu, J., Friedman, J., Srivastava, M., 2005. Design considerations for solar energy harvesting

wireless embedded systems. In: Proc. Fourth International Symposium on Information Processing in

Sensor Networks, pp. 457–462.

[22]. Raspberry Pi Foundation, 2018. Raspberry Pi - Teach, Learn, and Make with Raspberry Pi. Retrieved

from. https://www.raspberrypi.org/.

[23]. Rupniewski, M., Mazurek, G., Gambrych, J., Nałęcz, M., Karolewski, R., 2016. A real-time embedded

heterogeneous GPU/FPGA parallel system for radar signal processing. In: Proc. Intl IEEE Conferences

on Ubiquitous Intelligence Computing, Advanced and Trusted Computing, Scalable Computing and

Communications, Cloud and Big Data Computing, Internet of People, and Smart World Congress, pp.

1189–1197.

[24]. Schwartz, R.F., 1959. Laboratory: its scope and philosophy. IRE Trans. Edu. 2 (4), 120–122.

[25]. SciPy Developers, 2018. SciPy. Retrieved from. https://www.scipy.org. Sharp, D.C., Bell, A.E., Gold,

J.J., Gibbar, K.W., Gvillo, D.W., Knight, V.M.,

[26]. Weismuller, S.P., 2010. Challenges and solutions for embedded and networked aerospace software

systems. Proc. IEEE 621–634.

[27]. Stoianov, I., Nachman, L., Madden, S., Tokmouline, T., 2007. PIPENET: a wireless sensor network for

pipeline monitoring. In: Proc. 6th International Symposium on Information Processing in Sensor

Networks, pp. 264–273.

[28]. Tsai, W.K., Lai, C.J., Sheu, M.H., Chen, T.H., 2014. High dynamic range image based on block-based

edge strength for embedded system design. In: Proc. Tenth International Conference on Intelligent

Information Hiding and Multimedia Signal Processing, pp. 329–332.

[29]. Vahid, F., Givargis, T., 2002. Embedded System Design: A Unified Hardware/Software Introduction.

John Wiley & Sons.

[30]. Wang, J., 2017. Real-Time Embedded Systems. John Wiley & Sons.

[31]. Ziou, D., Tabbone, S., 1998. Edge detection techniques-an overview. Pattern Recognition and Image

Analysis C/C of Raspoznavaniye Obrazov I Analiz Izobrazhenii 8, 537–559.

http://refhub.elsevier.com/S2405-8440(19)36220-6/sref10
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref10
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref10
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref10
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref10
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref11
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref11
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref11
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref11
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref11
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref12
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref12
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref12
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref12
http://www.matplotlib.org/
http://www.matplotlib.org/
https://filezilla-project.org/
https://filezilla-project.org/
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref15
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref15
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref15
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref15
http://www.pythonware.com/products/pil
http://www.pythonware.com/products/pil
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref17
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref17
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref17
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref17
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref17
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref17
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref18
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref18
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref18
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref18
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref19
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref19
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref19
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref19
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref19
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref19
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref19
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref19
http://www.numpy.org/
mailto:http://www.opencv.org
https://www.python.org/
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref23
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref23
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref23
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref23
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref23
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref23
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref23
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref23
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref23
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref23
https://www.raspberrypi.org/
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref25
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref25
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref25
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref25
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref25
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref25
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref25
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref25
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref25
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref25
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref25
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref25
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref25
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref25
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref26
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref26
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref26
https://www.scipy.org/
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref28
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref28
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref28
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref28
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref28
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref28
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref28
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref28
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref29
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref29
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref29
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref29
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref29
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref29
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref29
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref29
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref30
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref30
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref30
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref30
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref30
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref30
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref30
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref30
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref31
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref31
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref31
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref31
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref31
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref32
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref32
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref33
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref33
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref33
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref33
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref33
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref33

